Catalytic reductive ring opening of epoxides enabled by zirconocene and photoredox catalysis
نویسندگان
چکیده
•Unprecedented zirconocene catalysis in reductive ring opening of epoxides•Broad reactivity across diverse substrates, including natural products•Reverse regioselectivity compared with the well-established methods titanocene•Changing metal center metallocene alters reversibility Epoxides are key structural motifs commonly found products and medicinal agrochemical agents as well various intermediates. Although epoxides generally act an electrophile, furnishes a nucleophilic carbon radical to undergo variety functionalizations. Titanocene(III) has been recognized unique for by synthetic chemists over past 30 years. Despite tremendous advances titanocene-mediated opening, counterpart is currently unknown. Intrigued comparatively oxophilic nature zirconium altering reaction profile, we investigated zirconocene-mediated opening. Contrasting renders our protocol complementary titanocene. We believe that this method will become strategically important transformation chemical synthesis, leading revisiting potential chemistry. The powerful convert readily accessible into array valuable alcohols, pharmaceuticals, agrochemicals, functional polymers. significant progress made, established were limited titanocene-catalyzed reactions. Herein, report unprecedented zirconocene-catalyzed epoxide enabled photoredox catalysis. Compared conventional ring-opening methods, present exhibited reverse afford more substituted alcohols via putative less-stable radicals. This remarkably mild smoothly cleaves C–O bonds molecules groups, products. finding changing influences energy profile advance provides new perspective chemistry group IV metals. IntroductionEpoxide common motif bioactive compounds, naturally occurring feedstocks, Due inherent strain, behave excellent electrophiles. In contrast, homolysis its bond radical, distinct intermediate unavailable from polar mechanisms.1Reductive dissolving metals (see, Birch,2 Hallsworth Henbest,3 Brown et al.,4 Benkeser al.5) or stoichiometric arene anions (Bartmann,6 Drigo al.,7 Cohen al.8) also radicals which further reduced exhibit carbanion reactivity.Google Scholar, 2Birch A.J. Reduction Part VIII. Some effects structure on course fission.J. Proc. R. Soc. NSW. 1949; 83: 245-250Google 3Hallsworth A.S. Henbest H.B. 924. Aspects stereochemistry. VII. Metal reduction vicinal epoxycyclohexanes.J. Chem. 1957; 1957: 4604-4608https://doi.org/10.1039/jr9570004604Crossref Scopus (42) Google 4Brown H.C. Ikegami S. Kawakami J.H. Additions bicyclic olefins. IV. Facile labile olefins lithium ethylenediamine.J. Org. 1970; 35: 3243-3245https://doi.org/10.1021/jo00835a013Crossref (71) 5Benkeser R.A. Rappa A. Wolsieffer L.A. Calcium reductions ethylenediamine. A comparison study.J. 1986; 51: 3391-3393https://doi.org/10.1021/jo00367a035Crossref (28) 6Bartmann E. Organometallic derivatives epoxides.Angew. Int. Ed. Engl. 25: 653-654https://doi.org/10.1002/anie.198606531Crossref (93) 7Dorigo A.E. Houk K.N. T. Unexpected cleavage epoxides: theoretical rationalization.J. Am. 1989; 111: 8976-8978https://doi.org/10.1021/ja00206a063Crossref (56) 8Cohen Jeong I.H. Mudryk B. Bhupathy M. Awad M.M.A. Synthetically useful β-lithioalkoxides lithiation aromatic anions.J. 1990; 55: 1528-1536https://doi.org/10.1021/jo00292a029Crossref (96) Scholar As such transformations, transition-metal catalyzed reactions have widely investigated, since pioneering work Kochi al.9Kochi J.K. Singleton D.M. Andrews L.J. Alkenes halides eliminations CrII complexes.Tetrahedron. 1968; 24: 3503-3515https://doi.org/10.1016/S0040-4020(01)92648-1Crossref (103) 10Gansäuer Justicia J. Fan C.-A. Worgull D. Piestert F. Reductive C–C formation after electron transfer.in: Bond C.-C. Catalyzed Formation. Springer, 2006: 25-52https://doi.org/10.1007/128_2007_130Google 11Florio Perna F.M. Salomone Vitale P. 8.29 epoxides.in: Comprehensive Organic Synthesis II. Elsevier, 2014: 1086-1122https://doi.org/10.1039/b501100kCrossref (11) many cases, deoxygenation furnish alkene, whereas, instance, Fe(salen) complex converts styrene oxides tetrahydrofurans generation benzyl radicals.12Hilt G. Bolze Kieltsch I. An iron-catalysed chemo- regioselective tetrahydrofuran synthesis.Chem. Commun. (Camb). 2005; 2: 1996-1998https://doi.org/10.1039/b501100kCrossref (48) 13Hilt Walter C. Iron-salen complexes efficient catalysts expansion epoxyalkenes.Adv. Synth. Catal. 2006; 348: 1241-1247https://doi.org/10.1002/adsc.200606107Crossref (27) 14Hilt Harms K. improved catalyst system iron-catalyzed intermodular ring-expansion epoxides.Chem. Eur. 2007; 13: 4312-4325https://doi.org/10.1002/chem.200601747Crossref PubMed (36) most employed these transformations titanocene(III) (Cp2TiX), exclusively exploited years introduction Nugent RajanBabu.15Nugent W.A. RajanBabu T.V. Transition-metal-centered organic synthesis. Titanium(III)-induced cyclization epoxy olefins.J. 1988; 110: 8561-8562https://doi.org/10.1021/ja00233a051Crossref (315) Scholar,16Gansäuer Pierobon Bluhm H. Catalytic, highly regio- chemoselective titanocene dichloride transfer transition reactions.Angew. 1998; 37: 101-103https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<101::AID-ANIE101>3.0.CO;2-WCrossref general, coordinates prepared titanocene(IV) reducing metal, proceeds single (Figure 1A). Mono-, di-, tri-substituted all protocol. resulting reacts large trapping hydrogen atom donors alcohols. So far, considerable research efforts directed broaden transformation.17Krische M.J. Heinrich Gansäuer Radicals III. 2012Google 18Rosales Rodríguez-García Muñoz-Bascón Roldan-Molina Padial N.M. Morales L.P. García-Ocaña Oltra J.E. nugent reagent: formidable tool contemporary organometallic chemistry.Eur. 2015; 2015: 4567-4591https://doi.org/10.1002/ejoc.201500292Crossref (61) 19Castro Rodríguez García Maecker R.N. Pozo L. Rosales Martínez Cp2TiCl: ideal reagent green chemistry?.Org. Process Res. Dev. 2017; 21: 911-923https://doi.org/10.1021/acs.oprd.7b00098Crossref (47) 20McCallum Wu X. Lin Recent titanium redox catalysis.J. 2019; 84: 14369-14380https://doi.org/10.1021/acs.joc.9b02465Crossref (51) 21Martínez A.R. Ojeda E.D. M.C. proven versatility Cp2TiCl.J. 2021; 86: 1311-1329https://doi.org/10.1021/acs.joc.0c01233Crossref remarkable functionalization generated even cross-coupling.22Zhao Y. Weix D.J. Nickel-Catalyzed regiodivergent aryl halides: co-catalysis controls regioselectivity.J. 2014; 136: 48-51https://doi.org/10.1021/ja410704dCrossref (117) Scholar,23Zhao Enantioselective Cross-Coupling meso -Epoxides Halides.J. 137: 3237-3240https://doi.org/10.1021/jacs.5b01909Crossref (107) Mild conditions allowed contribute numerous product syntheses.24Morcillo S.P. Miguel Campaña A.G. Álvarez de Cienfuegos Cuerva J.M. applications Cp2TiCl synthesis.Org. Front. 1: 15-33https://doi.org/10.1039/C3QO00024ACrossref 25Zweig Kim D.E. Newhouse T.R. Methods utilizing first-row total Rev. 117: 11680-11752https://doi.org/10.1021/acs.chemrev.6b00833Crossref (128) 26Padial Álvarez-Corral Muñoz-Dorado Stereoselective synthesis promoted titanocene(III).in: Studies Natural Products Chemistry. Elsevier B.V., 2018: 31-71Google studies showed merge can circumvent need metal.27Zhang Z. Richrath R.B. Merging steps catalysis-efficient sustainable chemistry.ACS 9: 3208-3212https://doi.org/10.1021/acscatal.9b00787Crossref (38) 28Lin Chen Li Shi Visible-light-driven spirocyclization dual catalysis.Chem. Sci. 11: 839-844https://doi.org/10.1039/C9SC05601GCrossref 29Parasram Shields B.J. Ahmad O. Knauber Doyle Regioselective cross-electrophile coupling (hetero)aryl iodides Ni/Ti/photoredox catalysis.ACS 2020; 10: 5821-5827https://doi.org/10.1021/acscatal.0c01199Crossref ScholarWhen unsymmetrical employed, issues must be addressed. factors controlling fascinating topic, detailed carried out.30Gansäuer Barchuk Keller Schmitt Grimme Gerenkamp Mück-Lichtenfeld Daasbjerg Svith Mechanism through homolytic substitution.J. 129: 1359-1371https://doi.org/10.1021/ja067054eCrossref (125) 31Gansäuer Fleckhaus Lafont M.A. Okkel Kotsis Anoop Neese Catalysis substitutions Ti–O bonds: oxidative additions steps.J. 2009; 131: 16989-16999https://doi.org/10.1021/ja907817yCrossref (83) 32Klare Gordon J.P. Rajanbabu β,γ-epoxy titanium(III) reagents. proposed role intramolecular bonding.Tetrahedron. 75: 32601512https://doi.org/10.1016/j.tet.2019.130662Crossref (9) predominantly occurs at bond, gives stable 1B). particular, thermodynamically benzylic,33Fernández-Mateos Encinas Madrazo Herrero Teijón Rubio González Titanocene-promoted intermolecular couplings nitriles. easy access β-hydroxyketones.J. 74: 3913-3918https://doi.org/10.1021/jo900479vCrossref (32) allylic,34Barrero A.F. Quílez del Moral J.F.Q. Sánchez E.M. Arteaga J.F. Regio- diastereoselective vinylepoxides chloride.Org. Lett. 8: 669-672https://doi.org/10.1021/ol052849wCrossref (24) anomeric35Parrish J.D. Little R.D. Preparation α-C-glycosides glycals.Org. 2002; 4: 1439-1442https://doi.org/10.1021/ol025575aCrossref (67) positions favorably generated, much like other For electronically unbiased epoxides, nonbonding interactions steric hindrance considered prevailing factor.30Gansäuer However, principles still remain elucidated, only few examples exist where predominant derived reactions.30Gansäuer ScholarAlternatively, cobalt offered same less-substituted radical. Nucleophilic Co(I) species attack less hindered side β-hydroxycobalt affords under visible-light irradiation. Pattenden reported possessing pendant complex.36Harrowven D.C. Cobalt mediated cyclisations olefins.Tetrahedron 1991; 32: 243-246https://doi.org/10.1016/0040-4039(91)80866-5Crossref Morandi successfully developed catalytic variant process.37Prina Cerai Atom-economical cobalt-catalysed aziridines alkenes.Chem. 2016; 52: 9769-9772https://doi.org/10.1039/C6CC04410GCrossref More recently, Giedyk Gryko demonstrated could applied Ni-catalyzed cross-coupling.38Potrząsaj Musiejuk Chaładaj W. determines halides.J. 143: 9368-9376https://doi.org/10.1021/jacs.1c00659Crossref (20) another approach, use halohydrin effective generating radical.22Zhao Scholar,39Ikeda Yorimitsu Shinokubo Oshima Cobalt-mediated Mizoroki-heck-type styrene.Adv. 2004; 346: 1631-1634https://doi.org/10.1002/adsc.200404074Crossref (45) shown Weix, iodohydrin convenient precursor NaI epoxide.22Zhao cross-coupling Ni,22Zhao Pd,40Lu X.-Y. Yan L.-Y. J.-S. J.-M. Zhou H.P. Jiang R.-C. Liu Lu Hu Base-free Suzuki-type boronic acids.Chem. 56: 109-112https://doi.org/10.1039/C9CC08079ACrossref Scholar,41Lu Wang S.-Q. Zhu Y.-J. Y.-M. J.-Y. H.-P. Ge X.-T. Pd-Catalyzed decarboxylative α,β-unsaturated carboxylic 11123-11126https://doi.org/10.1039/C9CC04795FCrossref catalysis.29Parasram substrate tolerance exploiting formed classical SN2 fashion broadly monosubstituted cyclic 1,2-disubstituted so far. nontraditional approach inspired enables providing may serve viable platform epoxides.Considering Bell-Evans-Polanyi principle,42Bell R.P. theory involving proton transfers.Proc. Lond. 1936; 154: 414-429https://doi.org/10.1098/rspa.1936.0060Crossref Scholar,43Evans M.G. Polanyi Further considerations thermodynamics equilibria rates.Trans. Faraday 1333-1360https://doi.org/10.1039/TF9363201333Crossref (406) activation (ΔETS) decreases if becomes exothermic 1C). Likewise, state would shift earlier similar starting material. state, contribution stability diminish according Hammond postulate.44Hammond G.S. Correlation rates.J. 1955; 77: 334-338https://doi.org/10.1021/ja01607a027Crossref (3668) Inspired difference dissociation (BDE) between (115 kcal/mol) Zr–O (132 kcal/mol),45Lappert M.F. Patil D.S. Pedley J.B. Standard heats M–C terms some homoleptic alkyls MRn.J. 1975; 830-831https://doi.org/10.1039/C39750000830Crossref (129) became interested using instead Its stronger oxophilicity should render exothermic. On basis, envisioned impact expected relative stability.Results discussionReductive epoxidesTo end, set out investigate photocatalysts, although zirconocene(III) scarcely utilized synthesis.46Negishi Huo Zirconocene derivatives.in: Marek Titanium Zirconium Synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, 2002: 1-49Crossref 47Lancaster S.J. Mingos D.M.P. Crabtree R.H. 4.07 - Complexes hafnium Oxidation State iii. 2007: 741-757Google 48Williams G.M. Gell K.I. Schwartz Competitive oxidation processes (dicyclopentadienyl)zirconium bis(phosphine) alkyl 1980; 102: 3660-3662https://doi.org/10.1021/ja00530a076Crossref 49Barden “pinacol” 2,3- O -isopropylidene- D -glyceraldehyde.J. 1997; 62: 7520-7521https://doi.org/10.1021/jo970974iCrossref 50Fujita Nakamura Triethylborane-induced schwartz reagent.J. 2001; 123: 3137-3138https://doi.org/10.1021/ja0032428Crossref 51Fujita Development reagents.Bull. Japan. 1727-1736https://doi.org/10.1246/bcsj.77.1727Crossref (12) 52Lakshmi Kantam Aziz Likhar P.R. dichloride-catalyzed pinacol aldehydes ketones.Synth. 36: 1437-1445https://doi.org/10.1080/00397910500522165Crossref 53Alpers Hoffmann Brasholz Visible-light photolysis allyl zirconocenes: photoinduced three-component (4+2)-cyclization–allylation reaction.Synlett. 28: 919-923https://doi.org/10.1055/s-0036-1588957Crossref (6) 54Ai Ye N. Q. Yahata Kishi Zirconium/nickel-mediated one-pot ketone synthesis.Angew. 10791-10795https://doi.org/10.1002/anie.201705520Crossref (29) 55Yahata Ai Iso Unified, efficient, scalable halichondrins: zirconium/nickel-mediated final reaction.Angew. 10796-10800https://doi.org/10.1002/anie.201705523Crossref (23) 56Umehara Ni/Zr-mediated synthesis: mixture NiI- And NiII-catalysts greatly improves molar ratio partners.Chem. 48: 947-950https://doi.org/10.1246/cl.190405Crossref (4) 57Gao Yang Bai Qi Visible-light-induced nickel-catalyzed alkylzirconocenes unactivated 6: 675-688https://doi.org/10.1016/j.chempr.2019.12.010Abstract Full Text PDF Since typically requires high power (E1/2(Cp2ZrCl2) = −1.85 V versus SCE),58Zachmanoglou C.E. Docrat Bridgewater B.M. Parkin Brandow C.G. Bercaw Jardine C.N. Lyall Green J.C. Keister electronic influence substituents ansa bridges probed infrared spectroscopic, electrochemical, computational studies.J. 124: 9525-9546https://doi.org/10.1021/ja020236yCrossref (159) commenced strongly photocatalyst Ir(4-MeOppy)3 (P1, E1/2 Ir(IV)/Ir(III)∗ −1.95 SCE MeCN).59Nacsa MacMillan D.W.C. Spin-center shift-enabled direct enantioselective α-benzylation alcohols.J. 2018; 140: 3322-3330https://doi.org/10.1021/jacs.7b12768Crossref (90) irradiation 1A presence dichloride, P1, 1,4-cyclohexadiene (CHD) PhCF3 furnished promising amount alcohol 2A. selectivity marked contrast reactions, albeit poor 2, entry 1). After screening additives, dimethylthiourea (T1) slightly enhanced regioselectivity, change T1 1-methyl-3-phenyl thiourea (T3) yield 2A entries 2–4). exploration zirconocenes solvents revealed combination Cp2Zr(OTf)2·THF facilitates suppressed 3A 5–8). Applying Ir(ppy)3 (P2, −1.88 MeCN)59Nacsa Ir[(dFCF3ppy)2(dtbbpy)]PF6 (P3, −1.21 MeCN)60Lowry M.S. Goldsmith J.I. Slinker Rohl Pascal Malliaras G.G. Bernhard Single-layer electroluminescent devices production ionic iridium(III) complex.Chem. Mater. 17: 5712-5719https://doi.org/10.1021/cm051312Crossref (0) diminished 9 10). addition molecular sieves increased reproducibility 11).61Molecular critical when substrates used, see Table S7 details.Google Control experiments excluding zirconocene, photocatalyst, light provided no 12–14).Figure 2Reaction optimizationaShow full captionaConditions: (0.10 mmol), (5.0 mol %), (3.0 (60 1,4-CHD equiv), (2.0 mL), 35°C, 12 h. NMR Yield. bIn toluene. cIn THF.dWith MS4Å (50 mg). eWithout irradiation.See supplemental information (section S3) information.View Large Image Figure ViewerDownload Hi-res image Download (PPT)Evaluation scope methodsWith optimized hand, next evaluated 3). First, examined terminal groups. Benzyl (1A), p-methoxybenzyl (1B), (1C) oxiranes accommodated corresponding secondary 2A–2C regioselectivity. esters (1D–1F), silyl ethers (1G 1H), chloride (1I), rings (1J–1O) tolerated. Protected L-prolinol (1P–1R), sulfonamide (1S), suitable substrates. di- epoxides. converted 1,1-disubstituted 1T 1U retained whereas 1V afforded 41% 2V 3V 4V, suggesting primary ring. Spiro (1W–1Z) uniformly desired 2W–2Z, incorporation bulky adamantane (1AA) considerably 1,2-Disubstituted sizes tolerated (1AB–1AF) comparable results those previously reactions.28Lin
منابع مشابه
Allenes in asymmetric catalysis: asymmetric ring opening of meso-epoxides catalyzed by allene-containing phosphine oxides.
Unsymmetrically substituted allenes (1,2-dienes) are inherently chiral and can be prepared in optically pure form. Nonetheless, to date the allene framework has not been incorporated into ligands for asymmetric catalysis. Since allenes project functionality differently than either tetrahedral carbon or chiral biaryls, they may create complementary chiral environments. This study demonstrates th...
متن کاملNiobium Pentachloride Catalysed Ring Opening of Epoxides
Epoxide ring opening is a frequently required transformation in Organic Synthesis. In this paper we describe the application of NbCl5 for this purpose using three different substrates. Chlorohydrins, 1,2-diols, products containing solvent residues as well as rearrangement products are obtained, depending on both the substrate structure and reaction conditions. Rationalizations to account for so...
متن کاملMagnesium Oxide Nanoparticles for Catalytic Synthesis of 2-Substituted Alcohols from Regioselective Ring Opening of Epoxides in Water
Epoxides undergo regioselective ring opening with various nucleophiles using catalytic amount of nano magnesium oxide and water as solvent under mild reaction conditions. The remarkable features of this method are improved yields, high regioselectivity, and green chemistry agreement.
متن کاملVisible-light photoredox catalysis enabled bromination of phenols and alkenes
A mild and efficient methodology for the bromination of phenols and alkenes has been developed utilizing visible light-induced photoredox catalysis. The bromine was generated in situ from the oxidation of Br(-) by Ru(bpy)3 (3+), both of which resulted from the oxidative quenching process.
متن کاملReductive ring opening reactions of diphenyldihydrofullerenylpyrroles
The reductive ring opening reaction conditions for the simple [60]fullerenyldihydropyrrole 1 have been optimized to include acetic acid in the reaction mixture to rapidly protonate the anionic intermediate. Under these conditions, the ring opened dihydrofullerene 2 was obtained in 68% yield. Under slightly modified conditions and at −78 °C, the reductive bis-ring opening of the tethered trans-4...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chem
سال: 2022
ISSN: ['2451-9308', '2451-9294']
DOI: https://doi.org/10.1016/j.chempr.2022.04.010